Compute the daily evaporation or transpiration of the surface using the Penman-Monteith equation.
PENMON( Rn, Wind, Tair, ZHT, Z_top, Pressure, Gs, VPD, LAI, extwind = 0, wleaf = 0.068, Parameters = Constants() )
Rn | Net radiation (MJ m-2 d-1) |
---|---|
Wind | Wind speed (m s-1) |
Tair | Air temperature (Celsius degree) |
ZHT | Wind measurement height (m) |
Z_top | Canopy top height (m) |
Pressure | Atmospheric pressure (hPa) |
Gs | Stomatal conductance (mol m-2 s-1) |
VPD | Vapor pressure deficit (kPa) |
LAI | Leaf area index of the upper layer (m2 leaf m-2 soil) |
extwind | Extinction coefficient. Default: |
wleaf | Average leaf width (m) |
Parameters | Constant parameters, default to
|
\(ET\), the daily (evapo|transpi)ration (mm d-1)
The daily evapotranspiration is computed using the Penman-Monteith equation, and a set of conductances as : $$ET=\frac{\Delta\cdot Rn\cdot10^6+\rho\cdot Cp\cdot\frac{VPD}{10\ }\cdot GH}{\ \Delta+\frac{\gamma}{\lambda\ }\cdot(1+\frac{GH}{GV})}\ $$ where \(\Delta\) is the slope of the saturation vapor pressure curve (kPa K-1), \(\rho\) is the air density (kg m-3), \(GH\) the canopy boundary layer conductance (m s-1), \(\gamma\) the psychrometric constant (kPa K-1) and \(GV\) the boundary + stomatal conductance to water vapour (m s-1). To simulate evaporation, the input stomatal conductance \(Gs\) can be set to nearly infinite (e.g. \(Gs= 1\cdot e^9\)).
If wind=0
, it is replaced by a low value of 0.01
Allen R.G., Pereira L.S., Raes D., Smith M., 1998: Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56.
# leaf evaporation of a forest : PENMON(Rn= 12, Wind= 0.5, Tair= 16, ZHT= 26, Z_top= 25, Pressure= 900, Gs = 1E09, VPD= 2.41, LAI=3, extwind= 0.58, wleaf=0.068)#> [1] 2.3239